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Coherent States and Number± Phase Uncertainty
Relations
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The number±phase uncertainty relations are revisited in view of the recent
discovery of a proper covariant phase observable. The high-amplitude limits of
the coherent-state expectations of the moment operators of the phase observable
are determined and the behavior of the number±phase uncertainty product in that
limit is investigated.

1. INTRODUCTION

It is well known that there is no phase observable, given as a self-adjoint

operator, which would be covariant under the shifts generated by the number

observable (Carruthers and Nieto, 1968; Garrison and Wong, 1970; LeÂvy-
Leblond, 1976). It is equally well known that there are self-adjoint operators

F which are conjugate to the number N in the sense of the commutation

relation F N 2 N F 5 iI (valid on a dense domain) (Garrison and Wong,

1970; Galindo, 1984; Busch et al., 1995a). It is another matter of fact that

there are phase observables, given as semi-spectral measures, which are
phase-shift-covariant and whose first moment operators fulfil the Heisenberg

commutation relation with the number observable (Holevo, 1982; Busch et
al., 1995b). In this paper we shall examine the uncertainty relations of the

number observable and a particular covariant phase observable, which is

uniquely given by the polar decomposition of the annihilation operator associ-

ated with the number (Section 2). We study the coherent state expectations
of the moment operators and the noise operator of the phase observable in

the limit of large amplitude (Section 4) and we determine the behavior of

the number±phase uncertainty relations in that limit (Section 5).
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2. THE PHASE

Let N 5 ( `
n 5 0 n | n & ^ n | be the number observable, with the domain

D (N ) 5 { c P * | ( `
n 5 0 n 2 | ^ n | c & | 2 , ` } on a complex separable Hilbert space

*. Let a 5 ( `
n 5 0 ! n 1 1 | n & ^ n 1 1 | and a* 5 ( `

n 5 0 ! n 1 1 | n 1 1 & ^ n | be
the annihilation and creation operators associated with N 5 a*a, where, for

instance, | n & ^ n 1 1 | denotes the operator c j | n & ^ n 1 1 | c : 5 ^ n 1 1 | c & | n &
on *. Let a 5 V | a | 5 V ! N be the polar decomposition of a. The partial

isometry V 5 ( `
n 5 0 | n & ^ n 1 1 | is not unitary, but it is contractive. Hence

there is a unique semi-spectral measure M such that V k 5 * 2 p
0 e ikxM (dx), for

all k 5 0, 6 1, 6 2, . . . (Mlak, 1991). The structure of this measure is easily
determined, and one obtains for all Borel subsets X of the interval [0, 2 p ]

M (X ) 5 o
`

n, m 5 0

1

2 p # X

e i(n 2 m)xdx | n & ^ m | (1)

A direct computation shows that M is covariant under the phase shifts gener-

ated by the number: e ixNM (X )e 2 ixN 5 M (X 1 x) for all x P [0, 2 p ] and

X P @[0, 2 p ].

The moment operators of M,

M (k) : 5 #
2 p

0

xk M(dx) (2)

are bounded, self-adjoint operators on * for all k 5 0, 1, 2, . . . . The first

moment operator M (1) assumes the form

M (1) 5 o
n Þ m

1

i (n 2 m)
| n & ^ m | 1 p I (3)

and it is just the `phase operator’ studied by Garrison and Wong (1970) and

Galindo (1984). As shown by those authors, the operator M (1) fulfils the

commutation relation

M (1)N 2 NM(1) 5 iI (4)

on the domain { c P * | M (1) c P D (N )}, which is dense in *. However,

since M is no spectral measure, and thus not multiplicative, its first moment

operator does not yield the kth moment operator M (k) as the kth power of M (1).
In particular, the noise operator R : 5 M (2) 2 (M (1))2 is strictly positive (Riesz

and Sz.-Nagy, 1990). Thus, in order to get the whole measurement statistics

of the phase observable one needs the statistics of all the moment operators

of M. [For additional details of this subject matter we refer to Busch et al.
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(1994) and further references therein.] Especially, the variance of the phase

observable M can now be given as

Var(M, c ) : 5 #
2 p

0

x 2 ^ c | M(dx) c & 2 1 #
2 p

0

x ^ c | M(dx) c & 2
2

5 ^ c | M (2) c & 2 ^ c | (M (1))2 c &

1 ^ c | (M (1))2 c & 2 ^ c | M (1) c & 2

5 ^ c | R c & 1 Var(M (1), c ) (5)

This shows that for any vector state c P *, 0 # Var(M, c ) # (2 p )2. Before

studying the behavior of the number±phase uncertainty product Var (N, c )

Var (M, c ) we determine the number state and the coherent state expectations

of the moment operators M (k) of the phase observable M.

3. NUMBER STATES AND THE PHASE

The number state expectations of M (k),

^ n | M (k) | n & 5 #
2 p

0

x k ^ n | M(dx) | n & (6)

are easily computed, since the density ^ n | M (dx) | n & is now simply (1/2 p )dx.
One gets ^ n | M (k) | n & 5 (2 p )k/(k 1 1), so that, in particular, Var (M, | n & )
5 1±3 p

2. This exhibits the randomness of the phase in the number states. We

observe also that ^ n | R | n & 5 p 2/6 2 ( n
1 (1/k 2), and Var (M (1), | n & ) 5 p 2/6 1

( n
1 (1/k 2). Thus, with growing n, the noise expectation ^ n | R | n & tends to zero

and the quantity Var (M (1), | n & ) grows to Var(M, | n & ).

4. COHERENT STATES AND THE PHASE

It is well known that coherent states have a well-defined phase in the

limit of large amplitude (see, e.g., Walls and Milburn, 1994). We shall show

next that the phase observable M behaves accordingly. Therefore, consider

the expectation of the kth moment operator M (k) of M in a coherent state
| z & 5 exp ( 2 | z | 2/2) ( `

n 5 0 (z n/ ! n!) | n & ,

^ z | M(k) | z & 5 #
2 p

0

xk ^ z | M(dx) | z & (7)

To calculate this expectation, we determine first the density ^ z | M (dx) | z & . Let

z 5 | z | e i u 5 rei u be the polar decomposition of the complex number z P C,
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and define the complex function g (w) : 5 ( `
n 5 0 w n/ ! n!. The density can then

be given as follows:

^ z | M(dx) | z & 5 o
`

n, m 5 0

^ z | n & ^ m | z & ei(n 2 m)x dx

2 p

5 e 2 r2
g(re 2 i( u 2 x))g (rei( u 2 x))

dx

2 p
(8)

The expectation (7) thus gets the form

^ z | M(k) | z & 5 e 2 r2 #
2 p

0

xkg(re 2 i( u 2 x))g (rei( u 2 x))
dx

2 p
(9)

To determine this integral for large amplitudes r we use the fact that the
function g behaves asymptotically (for large r, with w 5 rei a ) as follows

(Garrison and Wong, 1970):

g (rei a ) ® (2 p )1/4(2r)1/2 exp F 1

2
r 2 2 r 2 a 2 1 i 1 r 2 2

1

2 2 a G (10)

Introducing a new variable u 5 ! 2r(x 2 u ), we obtain for the quantity (9)

the asymptotic form

^ z | M(k) | z & ®
1

! p o
k

l 5 0 1 kl 2 u k 2 l( ! 2r) 2 l #
= 2r(2 p 2 u )

2 = 2r u

u le 2 u2
du (11)

In the limit r ª ` the above integral develops a singularity at u 5 0, 2 p .

Therefore, in the subsequent discussion we assume that 0 Þ u Þ 2 p . Using
the estimate

Z # = 2r(2 p 2 u )

2 = 2r u

u le 2 u2
du Z # 5

(2p 2 1)!!

2p
! p for l 5 2p

p! for l 5 2p 1 1

(12)

one gets

lim
r ® `

^ z | M (k) | z & 5 u k (13)

for all k 5 0, 1, 2, . . . .
This result shows, first of all, that

lim
| z | ® `

Var(M, | z & ) 5 u 2 2 u 2 5 0 (14)

Since, according to equation (5), Var(M, | z & ) 5 ^ z | R | z & 1 Var(M (1), | z & ), we

also have that both the expectation of the (positive) noise operator R and the
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variance of the first moment operator M (1) in a coherent state | z & tend to zero

with increasing amplitude | z | . The latter result was obtained also by Garrison

and Wong (1970) and Galindo (1984). As another remark on the result (13)
we observe that in the limit | z | ª ` the characteristic function j (t) of the

probability distribution X j ^ z | M (X ) | z & obtains the form j (t) 5 e it u . Since

j (t) Þ 0 for all t, the limiting distribution X j ^ z | M (X ) | z & | z | ª̀ has no density.

Since e it u 5 (e it u /n)n, the distribution is infinitely divisible, a matter of fact

reflecting the infinite divisibily of the phase.

To close this section we show directly that lim | z | ª ` ^ z | R | z & 5 0. Using
the fact that the semi-spectral measure M is the Neumark projection of the

spectral measure of the position Q of an object confined to move in the

interval [0, 2 p ] onto the subspace of the positive eigenvalues of the (conjugate)

momentum P, one can easily determine the explicit form of the noise operator

to be as follows:

R 5 o
`

n, m 5 0

sn, m | n & ^ m | (15)

with

sn, m 5 o
`

k 5 1

1

(n 1 k)(m 1 k)
(16)

This gives

^ z | R | z & 5 o
`

n, m 5 0

sn, m ^ z | n & ^ m | z &

5 o
`

n 5 0

sn, m | ^ n | z & | 2 1 o
n Þ m

sn, m ^ z | n & ^ m | z & [ I 1 II (17)

To estimate the second term we use the fact that, for instance, for n . m
one has

sn,m 5
1

n 2 m o
n 2 m 2 1

k 5 0

1

m 1 1 1 k

Hence we have 1/(n 1 1) , sn,m , 1/(m 1 1), so that sn,m lies in the interval
(1/(n 1 1), 1/(m 1 1)). We can approximate sn,m by the geometric mean of

the endpoints of this interval:

sn,m .
1

! n 1 1 ! m 1 1
5 : fn,m

This shows that for n . m, sn,m is asymptotically equivalent to fn,m in the

sense that limn,mª̀ sn,m/fn,m 5 1 (Murray, 1984). We obtain the same approxi-
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mation for n , m, so that for any n Þ m we have sn,m . fn,m. Thus the second

term in (17) takes the form

II . o
n Þ m

fn, m ^ z | n & ^ m | z &

5 o
`

n, m 5 0
fn, m ^ z | n & ^ m | z & 2 o

`

n 5 0
fn, n ^ z | n & ^ n | z &

5
e 2 | z | 2

| z | 2
(g (z) 2 1)(g (z) 2 1) 2

1

| z | 2
(1 2 e 2 | z | 2) (18)

which shows, by equation (10), that | II | ª 0, whenever | z | ª ` . To estimate
the first series in (17) we observe that

sn,m # #
`

0

dx

(n 1 x)2 5
1

n

Therefore,

I # e 2 | z | 2 1 1 1 o
`

n 5 1

| z | 2

n!n 2 5 e 2 | z | 2(1 1 Ei( | z | 2) 2 ln | z | 2 2 C ) (19)

Since

e 2 | z| 2 Ei( | z | 2) 5 | z | 2 2 o
`

0

n!

| z | 2n ® 0 with | z | ® `

the above estimate gives lim | z | ª̀ I 5 0. Putting these two estimates together,

one obtains

| ^ z | R | z & | # I 1 | II | ® 0 with | z | ® ` (20)

5. NUMBER± PHASE UNCERTAINTY

The number observable N is unbounded. The variance of N in a vector

state c is defined (and is finite) if and only if c P D (N ). The phase observable

M is bounded, so that its variance is finite for all vector states c ; in fact,

Var(M, c ) # (2 p )2. Thus for any vector state c P D (N ), the uncertainty
product Var(N, c )Var(M, c ) $ 0 is well defined, and this product is equal

to 0 for the number eigenstates | n & . Apart from that, there is kind of uncertainty

relation for the number±phase pair (N, M ), which we formulate next.

By equation (5) the variance of M in any state c is the sum of two

terms, the (nonnegative) noise ^ c | R c & and the variance Var(M (1), c ) of the
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first moment operator in that state. Hence we have for all vector states

c P D (N )

Var(N, c ) Var(M, c ) 5 Var(N, c ) ^ c | R c & 1 Var(N, c ) Var(M (1), c )

$ Var(N, c ) Var(M (1), c )

$
1

4 Z ^ N c | M (1) c & 2 ^ M (1) c | N c & Z 2 (21)

Due to the commutation relation (4) one has, in addition, the inequality

Var(N, c ) Var(M, c ) $
1

4
(22)

for any vector state c for which M (1) c P D (N ).
We study next the behavior of the number±phase uncertainty product

in the coherent states | z & , z P C. Though | z & P D (N ), these states are not in the

domain of the commutator NM(1) 2 M (1) N. Anyway, it turns out that in the high

amplitude the uncertainty product of the number and the phase observables

approaches, in general, the value 1±4 .

Consider a coherent state | z & , and let z 5 rei u . The variance of the number
observable is simply Var(N, | z & ) 5 | z | 2, whereas Var(M,| z & ) is to be determined

from equation (5). To estimate this quantity for large r we denote

Il(r, u ) : 5 #
= 2r(2 p 2 u )

2 = 2r u

ule 2 u2
du (23)

and use the estimates (11) to get

Var(M, | z & ) 5
u 2

! p
I0(r, u ) 1 1 2

1

! p
I0(r, u ) 2

1
1

r ! 2

p
u I1(r, u ) 1 1 2

1

! p
I0(r, u ) 2

1
1

2r 2 ! p
I2(r, u ) 2

1

2 p r 2 I1(r, u )2 (24)

Assume now that 0 Þ u Þ 2 p . Using the rule of L’ HoÃspital, one can show
by direct computation that the first two terms in (23), when multiplied by

r 2, tend separately to zero with r ª ` . Therefore,

lim
r ® `

Var(N, | z & )Var(M, | z & ) 5 lim
r ® `

1

2 ! p
I2(r, u ) 2 lim

r ® `

1

2 p
I1(r, u )2

5
1

! p #
`

0

u 2e 2 u2
du 5

1

4
(25)
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Since limrª̀ ^ z | R | z & 5 0, we also have

lim
r ® `

Var(N, | z)Var(M, | z & ) 5 lim
r ® `

Var(N, | z & )Var(M (1), | z & ) 5
1

4
(26)

We recall that Garrison and Wong (1970) showed the weaker result that 1/

4 is a lower bound for the product Var(N, | z & )Var(M (1), | z & ) in the limit r ª ` .

Consider now a coherent state | z & , with u 5 0. Using equation (9) and

the estimate (10), one can again compute the uncertainty product for N and

M, and one gets

lim
r ® `

Var(N, | z & )Var(M, | z & ) 5
1

2 ! p #
`

0

u 2e 2 u2
du 2

1

2 p 1 #
`

0

ue 2 u2
du 2

2

5
1

8 1 1 2
1

p 2 (27)

This number is less than 0.25. The same result is obtained for u 5 2 p . This

shows that the uncertainty product of the number and phase observables has
a discontinuity at z 5 ` 1 i0; namely, we have

lim
u ® 0

lim
r ® `

Var(N, | z & )Var(M, | z & ) Þ lim
r ® `

lim
u ® 0

Var(N, | z & )Var(M, | z & ) (28)

Hence in the complex plane the limit of this product does not exist for z ª
` 1 i0.
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